Az Eszterházy Károly Tanárképző Főiskola Tudományos Közleményei. 1998. Sectio Mathematicae. (Acta Academiae Paedagogicae Agriensis : Nova series ; Tom. 25)
ZAY , B., An application of the continued fractions for ... in solving some types of Pell's equations
8 Béla Zay Theorem 4. Let k (k > 1) be a natural number and D = k 2 + 1. Let a and ß denote the zeros of f^(x) = x 2 — 2kx — 1 with a > ß. Denote by M the set of positive solutions of x 2 - Dy 2 — N. (a) If N = I 2 and 1 < I < V~k then (b) If N = -I 2 and I < I < \fk then í I , / (a 2 m — ß 2 m) 1 M= Ux, y):x = -(a 2 m +ß 2™), y= K ^ _ £ \ m> 1 . (c) If 1 < |A r| < k and J TV | isn't a square of a natural number then M = 0. Proofs To prove Lemma 1. we need the following two lemmas. Lemma 5. Let f nj r 2 (^i ? x2i • • • •> xn) and g n+ 2 (^i , x 2 l..., x n) be the pohnomials which are defined by recurring relations fn+ 2(^1, • • - ,®n) = X nf n +i(x l, . . . ,X n_i) + / n(®l, • - - , a?n-2 ), TO > 1 and g n+ 2(x u. . .,x n) = xig n+i(x 2 i...,x n) + g n(x 3,..., x n), n> 1 respectively, where /1 = 0i =0 and f 2 = g 2 = 1. Then fn+ 2(^1, = 071+2 (si, • TO > -1 aiso holds. Proof. We can easily verify that /l =01, /2 = 02, /3(^1 ) = «1 = 03^1 ) and U{xi,X 2) = x 2f 3(xi) + /2 - 03(^2)^1 +02 = 54(^1,^2)Assume that n > 3 and /n+2-i(^l 5 • • • ) ^n-l ) — 071+2-^(^17 • • • 5 ^n-l ) holds for i = 1,2,3,4.