Az Eszterházy Károly Tanárképző Főiskola Tudományos Közleményei. 1998. Sectio Mathematicae. (Acta Academiae Paedagogicae Agriensis : Nova series ; Tom. 25)

ZAY , B., An application of the continued fractions for ... in solving some types of Pell's equations

6 Béla Zay be the representation of \fD as a simple continued fraction. Suppose that N is a non-zero integer with | TV j < \fD, and let (11) H-1 = 1, H 0 = a 0, H m ~ a m/r m_i + # m_ 2, 1 < m < 2s , (12) A'-i = 0, A'o = 1, K m = ö mÄ' m_i + Jf m_ 2, 1 < m < 2s, (13) //(n + 2)H-r = 2i/ s_ 1 tf( n + 1)s+ r + (-l) S+ 1 # ns+ r, 1 < r < 5, 71 > 0, (14) K { n+ 2)s+ r = 2tf s_ 1A' (n+1)s+ T. + (-l) s+ 1 K ns+ r, 1 < r < 5, n > 0, and (15) c ns+r+ 1 = (-l) n' + r­l(fT r 2 - DK 2 r), l<r<s. If 1 < r < 5, c r +i ^ 0 and \J ^ —— is a naturai number then let d r = V "V*^ 1 Denote by M the set of positive solutions (x, y ) of a; 2 - Dy 2 — N. Then (16) M = a: = d rH ns+ r, y = d rK ns+ r, n > 0, 1 < r < s}. This also means that: If there exists no natural numbers d r (1 < r < s) which satisfy the above conditions then there isn't integer solution x = u, y - t of x 2 - Dy 2 = N (|JV| < D), that is M is the empty set. Theorems Applying Lemma 4. for some special equations we obtain the following results. Theorem 1. Let k (k > 2) be a natural number with D = (2k +1) 2 -4. Let a and ß denote the zeros of /i(x) = x 2 - (2k + l)x + 1 and let a > ß. Denote by M the set of positive (x, y) solutions of x 2 — Dy 2 = A 7. (a) If N — 41 2 and l(l<l< J\] is a naturai number , then f am _Qm } M= |(x,y): x = l(a m + ß m), y = I — —, m > 1 j (b) IfN = (21 - l) 2 and 1 < / < \ + ^ V 1 ) (a 3m+ 3 +ß 3m+ 3) \ a 3 m+ 3 _ ß3m + 3 ~ß y = ( l - - ) :— ^ > m ^ 1

Next

/
Thumbnails
Contents