Az Eszterházy Károly Tanárképző Főiskola Tudományos Közleményei. 1998. Sectio Mathematicae. (Acta Academiae Paedagogicae Agriensis : Nova series ; Tom. 25)
TSANGARIS, PANAYIOTIS G., A sieve for all primes of the form R2+(X-)-l)2 ....
A sieve for all primes of the form r 2 + (a-+l) 2 41 B r. Moreover, X n, Y n,X n and Y n are determined by the following recursive formulae: 2x\X n - X n_i for n = 1,2,... X*, X\ = X\X* + dyiY* and r = 1,2,.. ., m. 2x 1Y n - y n_ 1 for n — 1,2,... Y*, Y\ = y\X* + XiY* and r - 1, 2,..., m. 2x lX n - X-i for n = 1,2,. . . I X* , X x — x\X* — dy{Y* and r - 1,2,..., m. for n = 1, 2,... ^ = yi^; - and r = l,2,...,m. Theorem 1.3. Consider the Diophantine equation (F), C ^ 0. Let X* + Y*y/d be the fundamental solution of a class A r of integral solutions of (F). Let x\ + y\Vd be the fundamental solutions of (P) and X n + Y nVd = (x; + Y r*Vd)(x , + V l Vd) n = (X; + Y r*Vd)(x n + y nVd), x' n + Y^Vd = (x; - Y;y/d)( X l + yiVd) n for all n = 0,1,.... Let R n = Y 2 + k 2 and R n = Y-f k 2 , where k is a fixed integer. Then the numbers R n and R n are determined by the following recursive formulae : R n+i = 2x 2R n - R n_! - 2 k 2(x 2 - 1) + 2 y\C, where R 0 = Y* 2 + k 2 and R x = (y xX; + x xY r') 2 + k 2 . R' n+ 1 = 2x 2R n - R n_! - 2 k 2(x 2 - 1) + 2 y\C, where R 0 = Y r* 2 + k 2 and R[ = (yi X* - XiY*) 2 + k 2 . 2. Reduction of the Diophantine equation x(x -f 1) = y(y -f 1) + z(z + 1) to a family of Fermat equations Theorem 2.1 below aims at reducing the problem of solving the Diophantine equation (E) x(x + 1) = y(y + 1) + z(z + 1) (1.3) ^n+1 with A^o ^n+l with Y 0 (1.4) 1 I with Xn Y 71+1 with Yn =