Az Eszterházy Károly Tanárképző Főiskola Tudományos Közleményei. 1998. Sectio Mathematicae. (Acta Academiae Paedagogicae Agriensis : Nova series ; Tom. 25)

JONES, J. P. and Kiss, P., Representation of integers as terms of a linear recurrence with maximal index

Representation of integers as terms of a. . . 23 Earlier we saw that n = 1 is realizable as a value of n such that N — Il n(a,b) for a > 1, b > 1. In the next lemma we shall show that all values of n < R(N ) are realizable as values of n such that N = H n(a , b). We shall call this the Intermediate Value Lemma (IVL). Lemma 1.5. (I. V.L.) If n < R(N), then there exist a,b such that N = fí n(a, b), 1 < a and 1 <6. Proof. Suppose r = R(N) and n < r. There exist a > 1, b > 1 such that N = H r(a,b). Let k = r — n. Then 0 < k. By Lemma 1.3 (ii), N = H r(a, b) = H r. k(H k(a,b),H k+ l(a,b)) = II n{H k(a, b), H k+ l (a, b)) where 1 < H k(a,b ) and 1 < II k+i(a,b), since 0 < k and a, b > 1. Lemma 1.6. If n > 1 then R(F n +1 ) = n. Proof. Let r = R(F n +i). Since F n+ X = F n_i + F n = H n(l,l),n < r. Conversely, F n+ 1 = H r(a.b ) = aF r_i + bF r > F r-i + F r = iv+i • Hence n > r. Therefore n — r. Lemma 1.7. If n > 2, then R(L n +1) = n + 1. Proof. Here we need the inequality L N +I +1 < -F n+3- Let r = R(L N +1). Since L N may be defined by LQ = 2, L\ =1 and L N+2 = LN + L N+\ > we have L n — II n{ 2,1) and so = H n+i(2,l). Hence n-f-1 < r. Conversely, L n+i — H r(a,b ) — aF r_i + bF r > F r-\ + F r = F r +\. Hence F r+1 < L n+i­Therefore F r + 1 + 1 < X n+i + 1 < ^n+3 and s o ^V+i < ^ n+3 • Therefore r + 1 < n + 3. Hence r < n -f 2. Therefore r < n + 1. So r = n + 1 and Ä(i„+i) = 1. Lemma 1.8. If N < F n+1, then R(N) < n. Proof. Let R(N) = r. Then there exist a, b > 1 such that N — H r(a , b). Hence we have F n +i > N — H r(a,b ) = aF r-\ + bF r > F r_i + F r = F r+ 1. Thus F n +i > F r + 1. Hence we have n-fl > r + 1 so that n > r. In otherwords n > R(N). Corollary 1.9. If 1 < n and N < F n+ lF n+ 2, then R(N) < 2n. Proof. If 1 < n, then F n+ 2 < L n +1- Hence F n +iF n+ 2 < F n +iL n+i = F 2n+ 2. Therefore N < F 2n+ 2. Hence by Lemma 1.8, R(N) <2n + l. There­fore R(N) < 2n. Lemma 1.10. Let A be an arbitrary positive integer and suppose 0 < n. Then (0 (ii) n = R(AF n +i ) if A<F n , n<ft(AF n +i) if F n < A.

Next

/
Thumbnails
Contents