Az Eszterházy Károly Tanárképző Főiskola Tudományos Közleményei. 1997. Sectio Mathematicae. (Acta Academiae Paedagogicae Agriensis : Nova series ; Tom. 24)
SZALAY, L., A note on the products of the terms of linear recurrences
A note on the products of the terms of linear recurrences 49 in positive integers w > 1, q, X\ ,..., x u and s £ S for which Xj > ó max^a;;} (j = 1 ,2,..., v), implies that q < q 0, where qo is an effectively computable number depending on no, 6, \ ..., G^ . 3. Lemmas In the proof of our Theorem we need a result due to A. Baker [1]. Lemma 1. Let , "k 2, ..., 7i> be non-zero algebraic numbers of heights not exceeding M\ , M 2,..., M r respectively (M r > 4). Further let b\ , b 2,..., 6 r_i be rational integers with absolute values at most B and let b r be a non-zero rational integer with absolute value at most B' (B' > 3). Suppose, that t>i log 7Tj / 0. Then there exists an effectively computable constant C = C(r, M\,..., M r_ 1, 7Ti,..., 7r r) such that (7) 22 bi logTT, > e-C(lo SM rlo EB' + f r) ) t = 1 where logarithms have their principal values. We need the following auxiliary result. Lemma 2. Let ci,...,c k be positive real numbers and 0 < S < 1 be an arbitrary real number. Further let xi,...,x k be natural numbers with maximum value x m = max,{x,} (m £ {!,...,&}). If Xj > Sx m (j = 1,..., k) and x m > xq then there exists a real number c > 0, which depends on k, ő, maxijc;} and xq, for which k e~CiXi ^ e-c(xi + --- + x k) _ e~cx (8) £ i-1 where x = x\ + • • • + x kProof of Lemma 2. Using the conditions of the lemma we have k k k Y^e~ c' x' < Y^e0' 5*™ = J2 e~ d' X m, i=l z = l i= 1 where d{ = ÖC{. If d m = min t{</,•} then k ^^ e-djX m ^ fc e-d mx m __ glog k — d mx r t=l