Az Eszterházy Károly Tanárképző Főiskola Tudományos Közleményei. 1997. Sectio Mathematicae. (Acta Academiae Paedagogicae Agriensis : Nova series ; Tom. 24)

PHONG, B. M., A characterization of the identity function

4 Bui Minh Phong simultaneously hold for all n,m 6 N. Proof. From (1), we have f{n 2 + 1) + /(m 2 + 2) = /(m 2 + 1) + f(n 2 + 2) for all n, m E N, and, so (4) f(n 2 + 2) - f(n 2 + 1) = /(3) - /(2): = D for all n G N. Thus, the last relation together with (1) implies that (5) * f(n 2 + m 2 + 3) - f{n 2 + 1) + /(m 2 + 1) + holds for all n,m £ N. Let Sj : = f(j 2 + 1). It follows from (5) that if k,l,u and Í;£ N satisfy the condition k 2 + / 2 = u 2 + v 2, then f{k 2 + 1) + /(/ 2 + 1) + D = f{u 2 + 1) + f(v 2 + 1) + D, which shows that (6) k 2 + I 2 = u 2 + v 2 implies Sk + Si — S u + S v. We shall prove that (7) S n. (-12 = Sn+ 9 + Sn+ 8 + ^N+7 — ^N+5 — ^N+4 ~ SN+3 + ^N holds for .all n £ N. Since (2j + l) 2 + (j - 2) 2 = (2j - l) 2 + (j + 2) 2 and (2j + l) 2 + (i - 7) 2 = (2i - 5) 2 + (i + 5) 2, we get from (6) that (8) + Sj-2 = 5 2 j-1 + Sj+2 and ^j+l + Sj­7 = + ^j+5-

Next

/
Thumbnails
Contents