Az Eszterházy Károly Tanárképző Főiskola Tudományos Közleményei. 1997. Sectio Mathematicae. (Acta Academiae Paedagogicae Agriensis : Nova series ; Tom. 24)

LIPTAI, K. and TÓMÁCS, T., Pure powers in recurrence sequences

40 Kálmán Liptai and Tibor Tómács [13] A. PETHO, The Pell sequence contains only trivial perfect powers, Coll. Math. Soc. J. Bolyai, 60 sets, Graphs and Numbers, Budapest, (1991), 561-568. [14] A. PETHO, Perfect powers in second order linear recurrences, J. Num­ber Theory 15 (1982), 5-13. [15] A. PETHO, Perfect powers in second order recurrences, Topics in Clas­sical Number Theory, Akadémiai Kiadó, Budapest, (1981), 1217-1227. [16] P. RLBENBOIM, Square classes of Fibonacci and Lucas numbers, Por­tugáliáé Math. 46 (1989), 159-175. [17] P. RlBENBOIM and W. L. MCDANIEL, Square classes of Fibonacci and Lucas sequences, Portugáliáé Math., 48 (1991), 469-473. [18] P. RlBENBOIM, Square classes of (a n — l)/(a — 1) and a n + l, Sichuan Daxue Xunebar 26 (1989), 196-199. [19] N. ROBBINS, On Fibonacci numbers of the form px 2 , where p is prime, Fibonacci Quart. 21 (1983), 266-271. [20] N. ROBBINS, On Pell numbers of the form PX 2, where P is prime, Fibonacci Quart. 22 (1984), 340-348. [21] T. N. SHOREY and C. L. STEWART, On the Diophantine equation ax 2 t + bx ty + cy 2 = d and pure powers in recurrence sequences, Math. Scand. 52 (1983), 24-36. [22] T. N. SHOREY and C. L. STEWART, Pure powers in recurrence sequences and some related Diophatine equations, J. Number Theory 27 (1987), 324-352. [23] O. WYLIE, In the Fibonacci series F x = 1, F 2 = l,F n+ i = Fn + P n-i the first, second and twelvth terms are squares, Amer. Math. Monthly 71 (1964), 220-222. KÁLMÁN LIPTAI and TIBOR TÓMÁCS ESZTERHÁZY KÁROLY TEACHERS' TRAINING COLLEGE DEPARTMENT OF MATHEMATICS LEÁNYKA U. 4. 3301 EGER, PF. 43. HUNGARY E-mail: liptaik@gemini.ektf.hu tomacs@gemini.ektf.hu

Next

/
Thumbnails
Contents