Az Eszterházy Károly Tanárképző Főiskola Tudományos Közleményei. 1995-1996. Sectio Mathematicae. (Acta Academiae Paedagogicae Agriensis : Nova series ; Tom. 23)

JONES, J. P. and Kiss, P., Some identities and congruences for a special family of second order recurrences

Some identities and congruences for a special family ... 9 Then using aß = 1 we have X(kn) = X(n{2q + 1)) = a n(2q+1 ) + ß^+V - ^ an(2q-l) + ßn(2q — 1) ^ ^ Q2n + ß2nj _ ^ Qn(2 g-3) + ßn(2q-3 = (—l) q~ 1(2q - l)(a n + ß n)(a 2 n + ß 2 n) - (-1) 9" 2(2 q - 3 )(a n + ß n ) (mod (a n + ß nf). But a 2 n + ß 2 n = (a n + ß n ) 2 - 2 = -2 (mod X(n) 2) and so X(*n) = K + /T) ^ —2(-l) 9_ 1 (2q - 1) - (-l) 9" 2^ - 3)) = (a n+ß n)(-iy(2(2q-l)-(2q-3)) = (-l) 9(2g + l)(a n + /3 n) (mod (a 7 1 + /T) 2). Erom this the theorem follows since k = 2q + 1. Proof of Theorem 4. Let k — 2q (q > 0). We prove Theorem 4 also by induction on q. By (4) the theorem can be easily verified for q = 1 and q — 2. Assume that q > 2 and that the theorem holds for q — 1 and q — 2. Then by the hiphothesis, using (1) and (4), we have X(kn) = X(2nq) = a 2n q + ß 2n q = + ^nU-l)^ ( Q2n + _ ^2n(,-2) + ß2n( q-2)^ = — 4( —1) 9_ 1 - 2( —l) 9­2 EE 2( —l) 9 (mod X{n) 2) which proves the theorem. References [1] D. JARDEN, Recurring sequences. Riveon Lematematika, Jerusalem (Israel), 1973. [2] J. P. JONES and P. Kiss, Generalized Lucas sequences, to appear. [3] E. LUCAS, Theorie des fonctions numériques simplement périodiques. Amer. Jour, of Math., 1 (1878), 184-240, 289-321. [4] J. ROBINSON and Y. V. MATIJASEVIC, Reduction of an arbitraty diophantine equatin to one in 13 unknowns. Acta Arithmetica , 27 (1975), 521-553. [5] C. R. WALL., Some congruence involving generalized. Fibonacci num­bers, Fibonacci Quart., 17 (1979), 29-33.

Next

/
Thumbnails
Contents