Az Eszterházy Károly Tanárképző Főiskola Tudományos Közleményei. 1994. Sectio Mathematicae. (Acta Academiae Paedagogicae Agriensis : Nova series ; Tom. 22)

HERENDI, T. and PETHŐ, A., Trinomials, which are divisible by quadratic polynomials

Trinomials, which are divisible by quadratic polynomials 65 3. Basic lemmata The following lemma generalizes a result of Ribenboim [4] and it is basic for the proofs of the theorems. Lemma 4. Let n > 2, 1 < k < n and a, 6, A, B £ Z. If x 2 — bx — a divides x n - Bx k - A then B • b k~ l mod 2 • f k. x (a, b 2) = b n~ l mod 2 • fn—i (a, b 2) . Further if (a) b k~ l mod 2 • / f c_! (a, b 2) = 0 then b n~ l mod 2 • / n_ x (a,6 2) = 0 and A-a - (b n~ 2 mod 2 • f n­2 (a,b 2)-B• ™ d 2 • (a, ö 2)) . (b) otherwise 6"­1 mod 2 ' fn—i (a, 6 2) fl | ' mod 2 • A_i (a,6 2) and A = a f c( —1) fc, ^ kb n­h­lmod 2-fn-k-i{a,b 2) bk-1 mod 2 * PROOF. (a) Assume that a; 7 1 — Bx k — A — (a; 2 — bx — a) • p(x) with p(x) = xn-2 Cn 3x n~ 3 -f c n_ 4:r n~ 4 + • • • + c\x -f Co- Similarly as in [4] we have the following équations: A — a • CQ • B = a • ci + b • c 0 (2) • 5 = a • Ci + b • Ci-1 - Ci_ 2 ^n-2,Jb • 5 = a + 6 • c n_ 3 - c n_4 ^n-l,* B = b - C n_3 where = { _ / 1 if i = j 0 otherwise

Next

/
Thumbnails
Contents