Az Eszterházy Károly Tanárképző Főiskola Tudományos Közleményei. 1994. Sectio Mathematicae. (Acta Academiae Paedagogicae Agriensis : Nova series ; Tom. 22)
BLAHOTA, I., Relation between Dirichlet kernels with respect to Vilenkin-like systems
Relation between Dirichlet kernels 111 Let Xn := Tpn an (n G N). A function system {Xn\ n £ N} of this type is called a iß a ( Vilenkin- like) system on Vilenkin group G m. The iß and iß a systems are orthonormal and complété in i 1(G m). The Dirichlet kernels with respect to iß a system are n — 1 D*(x, y)-=Y^ Xk(x)Xk(y) (n G N) k—0 The subsequence D ^ has a closed form (see [2]). We will use the following theorem, too (see [1]): Theorem B. DjM t( x>y) = ajM t(x)â jM t(y)Df M t(x - y) (n G N, x, y G G m). xb Tb 3~ l Lemma. Let x G G m, j, í G N. Then DM (x) = DJ^ ix) £ 4>kM t(x). k=o This lemma is needed in the proof of the theorem. Theorem Let x, y G G m, n G N. Then DX(x,y) = DHx-y) holds if and only if n G {jM t\0 < j < m t\t,j G N}. PROOF of the lemma. Using the statements and theorems mentioned above we have the following équations: j M t — 1 j1 /(/i+l)M t-l = E w*) = E E i*<(s) ?=0 /1=0 \ i=/iM ( j1 /(M-1)M,-1 S S + + + /i=0 \ l=hM t j1 /(M-l)M t-l /i=0 V i=/iM,