Az Eszterházy Károly Tanárképző Főiskola Tudományos Közleményei. 1994. Sectio Mathematicae. (Acta Academiae Paedagogicae Agriensis : Nova series ; Tom. 22)
BLAHOTA, I., Relation between Dirichlet kernels with respect to Vilenkin-like systems
Relation between Dirichlet kernels with respect to Vilenkin-like systems ISTVÁN BLAHOTA* Abstract. In this paper we discuss the relation between Dirrichlet-kernels with respect to Vilenkin an Vilenkin-like systems. This relation gives a useful tool in field of approximation theory on compact totally disconnected Abelian groups. Introduction Let m:=(mo,mi,...) denote a sequence of positive integers not less than 2. Denote by Z m j {0,1,..., rrij — 1} the additive group of integers modulo rrij (j G N). Define the group G m as the cartesian product of the discrète cyclic groups Z m. , oo Gm • — X . 3=0 The elements of G m ca n be represented by sequences x : = (x 0 , Xi, ..., Xj, ...) (Xj G Z m.). It easy to give a base the neighborhoods of G m : / 0(x) G m, In(x):={y G Gm\yo := xo, ..., y n-\ : = } for x G G m,n G N, k = 0,1,..., m n — 1. Define / n:=/ n( 0) for n G P (P := N{0}). Then I n is a subgroup of G m (n G N). The direct product fi of the measures Vk({j}) • = —— {jez m k,ke N) m k is the Haar measure on G m with /i(G m) = 1. * Research supported by the Hungárián National Foundation for Scientific Research (OTKA), grant no. F007347 and the National Scientific Foundation of the Hungárián Credit Bank (Alapítvány a Magyar Felsőoktatásért és Tudományért, MHB)