Az Eszterházy Károly Tanárképző Főiskola Tudományos Közleményei. 1993. Sectio Mathematicae. (Acta Academiae Paedagogicae Agriensis : Nova series ; Tom. 21)

Krystyna Grytczuk: Effective integrability of the differenctial equation ...

Theorem 1. Let y Q = }> 0(x), s l k(x), u k(x) and the coefficients P.(x) of (1), where jj = 0,1,...,«, £ = 1,2,...,« satisfy the conditions: 1° \ kM, J - (x,,x 2) ciR, AGR +. 2° u k(x) ^ 0, j> 0(*)*°> P 0(x)*0 for xeJ. 3° Pj(x) eC(J). The necessary and sufficient condition for the function (2) to be a particular solution of (1) is k = 1,2,...,«. Theorem 2. Let the assumptions 1°—3° of the Theorem 1 be satisfied. The necessary and sufficient codition for the functions ® y k = y k(x) = s 0 k(x).u$(x), k = 1,2,...,« to be the particular solutions of (1) is where (4) s l k(x) = si x k(x)+s^ k(x)^\ (6) ZP J(x).s n_ j k(x) = 0, k - 1,2,...,« /=0 ' where (x) are as in (4). Proof of the Theorem 1. 96

Next

/
Thumbnails
Contents