Az Eszterházy Károly Tanárképző Főiskola Tudományos Közleményei. 1993. Sectio Mathematicae. (Acta Academiae Paedagogicae Agriensis : Nova series ; Tom. 21)
Bui Minh Phong: Recurrence sequences and pseudoprimes
[4] B. M. Phong, A generalization of A Makowski's theorem on pseudoprime numbers, Tap chi Toan hoc 7 (1979), 16—19, (in Vietnamese) . [5] P. Kiss, B. M. Phong & E. Lieuwens, On Lucas pseudoprimes which are products of s primes, Fibonacci Number and Their Applications, 1986,133—139. [6] B. M. Phong, On super pseudoprimes which are products of three primes, Ann. Univ. Sei. Budapest Eötvös, Sec. Math. 30 (1987), 125—129. [7] B. M. Phong, On Lucas and Lehmer pseudoprime numbers, Matematikai Lapok (1982—1986), 79—92 (in Hungarian) . [8] B. M. Phong, Connections between Lucas pseudoprimes of different types, Tudományos Közi., Eger (1987), 55—67 (in Hungarian) . [9] P. Kiss & B. M. Phong, On a problem of A Rotkiewicz, Math. Comp. 48 (1987), 751—755. [10] B. M. Phong, Lehmer sequences and Lehmer pseudoprimes, Ph. D. Thesis, Budapest, 1987. [11] B. M. Phong, On super Lucas and super Lehmer pseudoprimes, Studia Math. Hungar. 23. (1988), 435—442. [12] I. Joó & B. M. Phong, On two Diophantine equations concerning Lucas sequences, Publ. Math. Debrecen 35 (1988), 301—307. [13] P. Kiss & B. M. Phong, Weakly composite Lucas numbers, Ann. Univ. Sei. Budapest Eötvös, Sec. Math. 31 (1988), 179—182. 141