Az Egri Ho Si Minh Tanárképző Főiskola Tud. Közleményei. 1982. (Acta Academiae Paedagogicae Agriensis : Nova series ; Tom. 16)

II. TANULMÁNYOK A TERMÉSZETTUDOMÁNYOK KÖRÉBÖL - Dr. Mátyás Ferenc: Wythoff-párok és a másodrendű sorozatok kapcsolata

SUMMARY WYTIIOFF-PAIRS AND SECOND ORDER RECURRENCES by Ferenc Mátyás In this paper we deal with the connection between second order linear recurrences and Wythoff-pairs. Let G — G {A, B. G 0 G t) =~{G„}® o be a second order linear recurrence defi­ned by integer constants A. B, G 0, Gt and the recurrence G n = AG n_i+BG n_ 2 (n > 1), where A B =(= 0, D = A 2 + 4B 4= 0 and [G 0| + |G,| 4= 0. If a and /? are the roots of the equation x 2 — Ax — B = 0, then we have G„ = a « n — b /3 n, where Gi —B Go Gi — a Go a = a nd a — p a — p Let us define the sequences {u„} n= 1 and {t> n} n=i in the following manner: Ui : == 1, v L : = 2 and for k > 1 u k : — m, where m is the smallest positive integer for which u i 4= m, vj =t= m if 1 = i < k and v k : = u k + k. The pairs (uj.vi), (U2; V2), ... are called Wythoff-pairs. We prove the following theorem : Let D > 0. The equation (G n; G n+ k) = ( U i; v t) has an iinfanite number of solutions in integer n. k, i, iff A = B —k=l and a > 0. 555

Next

/
Thumbnails
Contents